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A Informativeness of the likelihood function in the styl-

ized example

Figure A.1: Stylized example: information in the likelihood function of the data from panel
E of Figure 2.
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Note. Likelihood of the sample in panel E of Figure 2, as a function of the rotation angle α. α = 0
corresponds to the Choleski decomposition of the sample variance of Y . Left panel: Independent Student-t
likelihood given in (5). Right panel: Gaussian likelihood.

Let Y be the T × 2 matrix collecting the data on prices and quantities from panel E of
Figure 2, i.e. generated from Model 1. Let U be the T × 2 matrix with orthogonal shocks.
We can decompose Y into orthogonal shocks in infinitely many ways because

Y = UC = UQ(α)Q(α)′C = Ũ C̃ for any Q(α) =

(
sinα cosα

− cosα sinα

)
(A.1)

where U ′U = I = Ũ ′Ũ . Parameter α indexes all models that fit the data Y while implying
different slopes of demand and supply. All these models have the same likelihood if we incor-
rectly assume that the shocks are Gaussian. However, the Student-t likelihood discriminates
between these alternative models. This is illustrated in Figure A.1. The log-likelihood of
the data from panel E implied by the Student-t distribution of shocks, given in (5), peaks
at the rotation angle α that corresponds to Model 1. On the other hand, a researcher who
wrongly assumes the Gaussian model would not be able to discriminate between the models,
as the Gaussian likelihood is the same for any value of α. The Gaussian likelihood depends
only on the first two moments and all values of α yield the same first two moments. How-
ever, incorrect values of α imply that demand and supply shocks must exhibit particular
relations (such as a positive co-kurtosis), in order to match the data in panel E. This vio-
lates the independence of the shocks and hence gets penalized in the Independent Student-t
likelihood.
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B Computational details for the baseline model

B.1 The gradient of the likelihood function in the baseline model

I derive the analytical gradient of the log-likelihood (5) with the help of the results in Magnus
and Neudecker (2019) and Khatri and Rao (1968). Differentiating (5) w.r.t. vecW yields

d log p(Y |W, v)
d vecW

= T vecW−1′ + ι′T (A • Y ) (B.1)

where • denotes the row-wise Khatri-Rao product,

A • Y =

 a′1 ⊗ y′1
. . .

aT ⊗ yT

 , (B.2)

at is an N × 1 vector with the n-th element

at,n ≡ −vn + 1

vn

ut,n
1 + u2t,n/vn

, (B.3)

and ιT denotes a T × 1 vector with each element equal to 1.
Differentiating (5) w.r.t. vn yields

d log p(Y |W, v)
dvn

= −1

2

T∑
t=1

log(1 + u2t,n/vn) +
vn + 1

2v2n

T∑
t=1

u2t,n
(1 + u2t,n/vn)

+ T
d log c(vn)

dvn
(B.4)

where

d log c(vn)

dvn
= − 1

2vn
− 1

2
ψ(vn

2
) +

1

2
ψ(vn+1

2
) (B.5)

where ψ denotes the digamma function (i.e. the derivative of the log of the Gamma function).
In practice, I reparameterize the log-likelihood in terms of zn = log(vn).

B.2 Bayesian estimation

For the Bayesian estimation I specify priors for parameters W, v. The prior for W is flat,
p(W ) ∝ 1. The priors for vn need to be sufficiently informative to ensure the propriety of the
posterior (see Bauwens and Lubrano (1998) for a detailed discussion). I use Gamma priors
with a high mean to ensure that the priors are conservative, in the sense that, if anything,
they push vn’s towards relatively large values where the density is closer to Gaussian and
identification is weaker. This ensures that any identification comes from the data and not
from the prior. The Gamma density is given by G(αn, βn) = Γ(αn)

−1β−αn
n vαn−1

n exp(−vn/βn),
and has mean αnβn and variance αnβ

2
n.

I find a posterior mode θ̃ = (vec W̃ ′, ṽ)′ and the Hessian at the mode H̃. I start the
simulation from the posterior mode θ̃. I generate proposal draws with a Gaussian random
walk model with the innovation variance equal to H̃−1 scaled to ensure the acceptance rate
of about 20%. The scale is 0.86 in the baseline model. I generate 10,000,000 draws and
keep every 5,000-th. This simulation takes less than 10 minutes on a standard laptop. The
convergence of the Markov Chain is confirmed with the Geweke (1992) diagnostics.
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C Normalization: further details and examples

C.1 Further details

Let W̃ denote a draw of W , let q = 1, ..., 2NN ! index the signs and permutations of the N
columns of W̃ , let W̃q denote the matrix obtained by the q-th sign swap and permutation of
the columns of W̃ , let VW denote the asymptotic variance of vecW (i.e., the corresponding
N2 × N2 block of the inverse of the Hessian of the likelihood at Ŵ , v̂) and let F (x|m,V )
denote the multivariate Gaussian density with mean m and variance V evaluated at the
point x.

Algorithm 1 Given a draw W̃ , for each signs and permutation W̃q, q = 1, ..., 2NN ! evaluate

f(q) = F (vec W̃q| vec Ŵ ,VW ). Take the W̃q∗ where q∗ = argmaxq f(q) as the normalized W̃ .

Algorithm 1 can be accelerated by using the sign normalization of Waggoner and Zha
(2003). While their procedure is designed for Gaussian Structural VARs, it works also with
the Gaussian approximation of the likelihood proposed here. The following Algorithm 2
is faster and in the example below it produces for each draw the same normalization as
Algorithm 1. Let p = 1, ..., N ! index the permutations of the N columns of W̃ , let W̃p

denote the matrix obtained by the p-th permutation of the columns of W̃ .

Algorithm 2 Given a draw W̃ , for each permutation W̃p, p = 1, ..., N !:

1. Scale the columns of W̃p by +/-1 using the Likelihood Preserving normalization of
Waggoner and Zha (2003) (their Algorithm 1), obtaining a sign-normalized matrix
W̃LP

p .

2. Evaluate f(p) = F (vec W̃LP
p | vec Ŵ ,VW ).

Take the W̃LP
p∗ where p∗ = argmaxp f(p) as the normalized W̃ .

In practice, a finite Markov Chain may visit the neighborhoods of only a subset of modes.
In this case, rather than considering all the N ! permutations, one only needs to consider
the signs and permutations of those columns of W that have multiple modes before the
normalization. This allows to speed up the normalization in case the model is large.

C.2 Examples

It turns out that in most of the estimations reported in the paper and in its appendices the
modes are well separated and posterior simulators with standard settings never jump to the
neighborhood of another mode. For example, Figure C.1 reports the trace plots of W from
the baseline estimation. All draws correspond to the same signs and permutation and do
not require normalization.

One of the few exceptions is the estimation of the baseline model on the subsample 1991-
2004, reported in the left panel of Figure F.1. (By contrast, the estimation on the 2005-2019
subsample, reported in the right panel of the same figure, does not require normalization.)
Figure C.2 reports trace plots of W estimated on the 1991-2004 subsample. The top panel
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Figure C.1: Trace plot of W , estimation on the full sample (241 obs.): no normalization
needed
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Trace plots of W

Note. The horizontal lines in the plots indicate the maximum likelihood estimates.

shows the trace plots before normalization. The trace plots of the coefficients corresponding
to the shocks u1 and u2 show no anomalies. However, the trace plots for u3 and u4 fluctuate
between different values, corresponding to opposite signs of the shocks or their alternative
ordering. The bottom panel shows the trace plot obtained after applying Algorithm 1 or,
equivalently, Algorithm 2 to each draw. Here also for u3 and u4 most draws cluster in the
vicinity of the maximum likelihood estimates.

Another example is the estimation with PDMT shocks and the restriction v̄ = 0.4,
discussed in G and presented in the middle panel of Figure G.2.
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Figure C.2: Trace plot of W , estimation on the subsample 1991-2004 (120 obs.)
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Note. The horizontal lines in the plots indicate the maximum likelihood estimates.
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Figure C.3: Trace plot of W , estimation with PDMT shocks
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Note. The horizontal lines in the plots indicate the maximum likelihood estimates of the baseline

model.
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D Baseline model: estimation and further results

D.1 Maximum likelihood and Bayesian estimation

I maximize the likelihood using 100 random starting points and all maximizations converge
to the same point, up to sign and order swap (and a small numerical error). To obtain
one starting point I start with the choleski factor of the covariance of Y and rotate it with
a random N × N orthogonal matrix drawn from the Haar measure (Rubio-Ramı́rez et al.,
2010). I use the inverse of the resulting matrix as the starting point forW . I draw the initial
v from the uniform distribution on the interval [1,30]. The resulting 100 modes correspond
to almost as many sign and order permutations, so I normalize them to the same sign
and order before comparing them. After normalization they turn out to be the essentially
same. The rank correlations between the resulting shocks and the reference shocks never
fall below 0.9999. The maximum difference between the respective vn’s is 0.013. These are
only numerical differences and there is no evidence of any nontrivially different local modes
or other problems with the identification.

To cross-check the maximum likelihood estimation and to construct precise error bands I
obtain 2000 approximately uncorrelated draws from the Bayesian posterior. For the Bayesian
estimation I specify conservative priors for vn, with αn = 2 and βn = 5 for all n, implying
the mean of 10 (which is much higher than the point estimates v̂). For v1 some draws in the
Monte Carlo simulation are small causing numerical problems, so to prevent this I truncate
the prior to vn > 0.45. The stored 2000 draws display no significant autocorrelation and the
chain is stationary according to the Geweke (1992) diagnostics. The simulation takes less
than 10 minutes on a standard laptop.

D.2 Further results

Table D.1: Weight matrix W

u1 u2 u3 u4

MP1 1.92 -0.17 0.15 -0.04
(0.46) (0.03) (0.02) (0.02)

ONRUN2 -0.03 0.15 -0.56 0.31
(0.04) (0.06) (0.06) (0.05)

ONRUN10 0.01 0.16 0.77 0.07
(0.03) (0.09) (0.08) (0.04)

SP500 0.00 -0.02 0.00 0.04
(0.00) (0.00) (0.00) (0.00)

Note: Maximum likelihood estimates. Posterior standard deviations in parentheses.

Table D.1 reports the matrix W , which determines how the variables are weighted to
obtain shocks (recall that U = YW ). We can see that u1 is essentially equal to MP1 - it
only places weight on MP1, while the weights on the remaining variables are negligible. By
contrast, the other shocks are constructed from multiple variables.
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Figure D.1: Posterior distribution of C
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Note: Histograms of the elements of C based on the posterior. Black vertical lines represent the maximum
likelihood estimates.

Figure D.1 reports the posterior distribution of the elements of C obtained with the
simulation.

Figure D.2 reports the distribution of the degree of freedom parameters v1, ..., v4. The
posterior distributions are concentrated near the maximum likelihood estimates. The prior
pushes them gently towards the value of 10 but the sample information dominates and
the posterior modes are very close to the maximum likelihood estimates. Almost all the
probability mass lies at values below 4, implying very leptokurtic distributions. For v2, v3, v4
significant probability mass lies at values between 1 and 2, at which the variance of the shock
is infinite, and for v1 virtually all probability mass lies below 1 where the variance is not
defined.

Since the shocks are likely not to have a finite variance, also variance decompositions
need to be taken with a grain of salt and we should expect them to be sensitive to outliers.
Table D.2 reports the variance decompositions of all variables, which should be interpreted
with this caveat. u1 is basically equivalent to MP1. In light of this, the federal funds rate
surprises are a valid instrument for the standard monetary policy shock (e.g. Kuttner (2001);
Bernanke and Kuttner (2005) use this instrument). However, the most important shock is
the Odyssean forward guidance shock u2, which accounts for 44% of the variation of 2-year
bond yields and about a half of the variation of 10-year bond yields and stock prices in
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Figure D.2: Posterior distribution of v
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Note: Histograms of vs based on the posterior sampler. The black vertical line represents the maximum
likelihood estimate.

Table D.2: Variance decomposition

MP1 ONRUN2 ONRUN10 SP500

u1 1.00 0.35 0.10 0.17
(0.00) (0.04) (0.03) (0.04)

u2 0.00 0.45 0.53 0.48
(0.00) (0.04) (0.10) (0.04)

u3 0.00 0.05 0.23 0.02
(0.00) (0.03) (0.10) (0.02)

u4 0.00 0.16 0.14 0.33
(0.00) (0.04) (0.03) (0.06)

Total 1.00 1.00 1.00 1.00

Note: Shares of the sample variance. Posterior standard deviations in parentheses.

the half-hour windows around FOMC announcements. The third shock that is pervasive, in
the sense that it accounts for non-trivial shares of multiple variables, is the Delphic forward
guidance shock u4. It accounts for about 15% of the variation of Treasury yields and one
third of the variation of stock prices.

Table D.3 reports the correlations between the shocks and, at the same time, illustrates
the perils of applying linear statistics to non-Gaussian variables. The rank (Spearman’s)
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Table D.3: Rank correlations and linear correlations between the shocks

Rank correlations Linear correlations

u1 u2 u3 u4

u1 1 -0.01 -0.01 0.02
u2 (0.92) 1 0.02 0.04
u3 (0.90) (0.77) 1 0.01
u4 (0.70) (0.52) (0.83) 1

u1 u2 u3 u4

u1 1 -0.17 -0.07 -0.12
u2 (0.01) 1 0.31 0.04
u3 (0.25) (0.00) 1 0.02
u4 (0.06) (0.49) (0.76) 1

Note: Correlation coefficients above the diagonal, p-values in parentheses below the di-
agonal. Rank correlations (Spearman’s correlations) in the left panel, linear correlations
(Pearsons’s correlations) in the right panel. The linear correlation between u2 and u3
drops from 0.31 to 0.06 if one omits the QE1 announcement.

correlations, reported in the left panel are all negligible. However, the linear (Pearson’s)
correlations, reported in the right panel, are sometimes large. Especially striking is the
correlation of 0.31 between u2 (forward guidance shocks) and u3 (LSAP shocks). Such a
high correlation between Gaussian shocks would mean that they are systematically related
and hence considering their effects in isolation makes little sense. However, for non-Gaussian
variables such a high linear correlations can happen by chance. In fact, in this case the linear
correlation is almost entirely driven by a single observation, namely the announcement of
the QE1 program in March 2009. After omitting this data point the linear correlation drops
to 0.06, revealing that the shocks u2 and u3 are not in fact systematically linearly related.

Table D.4: Rank correlations between the squared shocks

(u1)
2 (u2)

2 (u3)
2 (u4)

2

(u1)
2 1 0.16 0.12 0.19

(u2)
2 (0.01) 1 0.19 0.15

(u3)
2 (0.07) (0.00) 1 0.23

(u4)
2 (0.00) (0.02) (0.00) 1

Note: Correlation coefficients above the diagonal, p-values in parentheses below the diagonal.

Table D.4 reports rank correlations between squared shocks, in order to understand if
the shocks’ absolute sizes are also independent, as assumed in model (1). It turns out that
the shock sizes are not independent: in general large shocks are somewhat more likely to
occur together. The rank correlations are positive and, with one exception, statistically
significant at the 5% level. In light of this result, it is useful to revisit model (1) and check
the robustness to relaxing the assumption of full independence (Montiel Olea et al., 2022).
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E Sensitivity of the results to the degree of non-Gaussianity

This section studies to what extent the identification weakens as we impose a higher degree
of freedom parameter in the Student t distribution. It assumes a common degree of freedom
parameter v̄ for all the shocks and varies it on a grid. The results remain very similar for
values of v̄ between 1 and 12. For v̄ > 12 the identification becomes weak and the point
estimates begin to change. However, these values are strongly rejected by a likelihood ratio
test.

Figure E.1: Maximum log-likelihood conditional on different values of v̄
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Note. The horizontal line shows the cut-off point implied by the likelihood ratio test at the 1%

significance level.

More in detail, I re-estimate model (5) fixing a common value v̄ for all shocks at a grid
from 0.5 to 30. I assume that all shocks have the same, common v̄ in order to reduce the grid
size. Figure E.1 shows that the maximum attainable value of the log-likelihood decreases
quickly as v̄ deviates from the maximum at v̄ = 1.33. The figure is truncated at v̄ = 10 for
readability but the log-likelihood continues to decrease also for v̄ > 10. The horizontal line
at the top of the figure shows the cut-off point implied by the likelihood ratio test at the 1%
significance level.

Figure E.2 shows that the effects of the four shocks are very similar for values of v̄ between
1 and 12. Especially for the shocks u1 and u4 the estimates are difficult to distinguish in the
figure as they lie almost on top of each other. The main visible difference is present for long-
term rate shocks u3: its effect on the 2-year yield is slightly negative for low v̄ and becomes
positive starting at about v̄ = 3. The point estimates change qualitatively somewhere
between v̄ = 12 and v̄ = 15: shocks u1 and u4 become essentially fed funds rate shocks
with little effect on the longer maturities, while u2 becomes an almost parallel shift of the
whole yield curve including the shortest maturity. However, for v = 15 the uncertainty (not
reported here) is substantially larger and many effects are no longer statistically significant
(the same is true for v̄ = 12, but not for v̄ ≤ 10).
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Figure E.2: The effects of standardized shocks, conditional on different values of v̄
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F Results in subsamples

Estimation of the model on smaller sub-samples yields broadly similar results to the full
sample, with two corrections to the previous messages. First, in the earlier part of the sample
there is some evidence of the standard information effects associated with the movements
of the current fed funds rate (as in Melosi, 2017; Nakamura and Steinsson, 2018). These
standard information effects do not replace or modify the Delphic forward guidance but
appear as a separate shock substituting the LSAP shock. Second, the LSAP shock u3 has a
significant effect on the stock prices in the later part of the sample.

Figure F.1: First vs second half of the sample
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Figure F.1 reports the responses of all variables estimated in the first half of the sample
(left panel) and in the second half of the sample (right panel). The error bands in these
smaller samples are wider. A number of differences between the left and the right panel
show up. First, the standard policy shock moves the yield curve in a similar way but is
larger in the first sample (MP1 increases by 9 basis points) and smaller in the second sample
(MP1 increases by less than 6 basis points). Second, in response to the Odyssean forward
guidance shock u2 medium and long rates move in parallel in the first sample, while the effect
is hump-shaped in the second sample, with the 10-year rate moving less. Third, the LSAP
shock is non-existent in the first sample. Instead, the shock u3 now resembles the standard
information shock associated with the fed funds rate, but is not precisely estimated. By
contrast, the LSAP shock in the second sample is very pronounced and has a significant and
intuitive effect on the stock prices. Finally, the Delphic forward guidance shock is broadly
similar but it moves the stock prices more relatively to the interest rates in the first half of
the sample.
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Figure F.2: Rolling window estimates of C

2004 2006 2008 2010 2012 2014 2016 2018 2020
-8

-6

-4

-2

0

2

4
u1

MP1
ONRUN2
ONRUN10
SP500

2004 2006 2008 2010 2012 2014 2016 2018 2020
-35

-30

-25

-20

-15

-10

-5

0

5
u2

MP1
ONRUN2
ONRUN10
SP500

2004 2006 2008 2010 2012 2014 2016 2018 2020
-10

-5

0

5

10

15

20
u3

MP1
ONRUN2
ONRUN10
SP500

2004 2006 2008 2010 2012 2014 2016 2018 2020
-5

0

5

10

15

20
u4

MP1
ONRUN2
ONRUN10
SP500

Notes. Each line plots the effect of shock ui on variable j, C(i, j) estimated on rolling samples of

120 observations. The horizontal axis shows the last observation of the rolling sample.

Figure F.2 reports the responses of all variables estimated on rolling windows of 120
observations. Many of these models are imprecisely estimated, but the overall tendencies
are clear and quite intuitive. First, the standard monetary policy shock u1 becomes smaller
as the windows include more observations from the ZLB period. Second, for the Odyssean
forward guidance u2 we can see the gradual emergence of the ‘hump-shaped’ yield curve
response noted above. Third, the shock u3 is unstable and switches from being a standard
information shock in the early windows (where it is a fed funds rate hike associated with a
positive stock price response) to being a contractionary LSAP shock in the later windows.
The switch occurs at the point where the rolling window includes for the first time the QE1
announcement of March 18, 2009. However, the same switch occurs, only several months
later, when the QE1 announcement is omitted from the sample. Finally, the Delphic forward
guidance shock maintains similar features, with the elasticity of stock prices to interest rates
becoming somewhat smaller in the later windows.

Figure F.3 reports the maximum likelihood estimates of v obtained on the rolling win-
dows. We can see that v1 decreases as the windows include more of the ZLB period where
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Figure F.3: Rolling window estimates of v
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standard monetary policy captured by u1 becomes constrained. The other vn’s fluctuate in
the range between roughly 1.5 and 3.
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G Relaxing the assumption of independence

In this section I formulate and estimate an alternative model,

yt = C ′ut, ut ∼ PDMT (v0, v̄), (G.1)

where PDMT (v0, v̄) denotes the new Partially Dependent Multivariate t-distribution de-
fined below. The PDMT distribution nests the Independent t and Multivariate t as extreme
cases and spans all intermediate degrees of tail dependence between these extremes.

G.1 The PDMT distribution

I construct the PDMT through the following steps, inspired by Jones (2002); Shaw and Lee
(2008); Jiang and Ding (2016). The construction is based on the fact that a t-distributed
variate can be obtained by scaling a Normal variate by an inverse square root of a Chi-squared
variate divided by its degrees of freedom:

If z ∼ N (0, 1), q ∼ χ2(v) and t = z

√
v

q
, then t ∼ T (v). (G.2)

Consequently, a vector of independent t’s can be constructed as(
z1

√
v

q1
, z2

√
v

q2
, . . .

)
(G.3)

where z1, z2, ... are independent standard Normal variates and q1, q2, ... are independent Chi-
squared variates with v degrees of freedom. The Multivariate t-distribution imposes a tight
dependence on the tail behavior of all elements of the vector. A vector from the Multivariate
t distribution can be constructed as(

z1

√
v

q
, z2

√
v

q
, . . .

)
(G.4)

i.e. all the independent Normal variates are scaled by the same Chi-squared variate q. The
new PDMT distribution is constructed as(

z1

√
v0 + v1
q0 + q1

, z2

√
v0 + v2
q0 + q2

, . . .

)
(G.5)

where q0, q1, q2, ... are Chi-squared with v0, v1, v2, ... degrees of freedom. In the baseline case
I will impose that v1 = v2 = · · · = v̄.

The PDMT (v0, v̄) has the following attractive properties:

1. Each of its univariate marginal densities is T (v0 + v̄). This is because the sum of a
Chi-squared(v0) and Chi-squared(v̄) is Chi-squared(v0 + v̄).

2. When v0 = 0 it collapses to a vector of Independent t-distributions with v̄ degrees of
freedom.
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3. When v̄ = 0 it collapses to a Multivariate t-distribution with v0 degrees of freedom.

The disadvantage of the PDMT is that it does not have a tractable density.1 Conse-
quently, it needs to be studied using simulation methods.

G.2 Estimation

I estimate model (G.1) using Bayesian methods with weakly informative priors and data
augmentation.2 I first rewrite it as

yt = W−1′Q
−1/2
t zt, zt ∼ N (0, IN) (G.6)

where

Qt = diag

(
qt0 + qt1
v0 + v̄

,
qt0 + qt2
v0 + v̄

, . . .

)
. (G.7)

I treat the qtn as missing data, and specify a “prior” or a likelihood for them that is χ2(vn),
i.e. gamma G(vn/2, 2), given by

p(qtn) = Γ(vn/2)
−12−vn/2q

vn/2−1
tn exp(−qtn/2) (G.8)

where n = 0, 1, ..., N and, in the baseline case, v1 = ... = vN = v̄. Hence, the complete data
likelihood in period t is

p(yt, q1t, ...qNt|W, v0, ..., vN) = |W−1′Q−1
t W−1|−1/2 exp

(
−1

2
y′t(W

−1′Q−1
t W−1)−1yt

)
×

N∏
n=0

Γ(vn/2)
−12−vn/2q

vn/2−1
tn exp(−qtn/2) (G.9)

I specify priors for parameters W, v0, v1, .... The prior for W is flat, p(W ) ∝ 1. The prior for
vn is G(αn, βn) = Γ(αn)

−1β−αn
n vαn−1

n exp(−vn/βn). I use weakly informative priors αn = 0.01
and βn = 10, implying the mean of 0.1 and the standard deviation of 1 (I verified that using
even more diffuse priors makes no discernible difference to the results).

I conduct inference on the parameters W, v0, v1, ... using a version of the Metropolis-
Hastings algorithm. At each step of the simulation I draw new W, vn, qtn for n = 0, ..., N
and t = 1, ..., T from their respective conditional densities, conditioning on the most recent
draw of the remaining quantities.

The conditional posterior of W is

p(W |Y, ·) ∝ |W |T exp

(
−1

2

∑
t

y′tWQtW
′yt

)
. (G.10)

1Jones (2002) discusses a related distribution that does have a tractable density but notes that this seems
to be an exception in this class of distributions.

2For a frequentist perspective on data augmentation see e.g. Jacquier et al. (2007).
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This posterior is nonstandard. To draw from it, I draw a candidateW ∗ from the Gaussian
proposal density

f(W ) = N
(
ŵ, κH−1

)
(G.11)

where ŵ is the mode of p(W |Y, ·), H the Hessian of log p(W |Y, ·) and κ ≥ 1 is a scalar. I
derive the analytical expressions for the gradient and the Hessian of log p(W |Y, ·) using the
methods of Magnus and Neudecker (2019).

The candidate draw is accepted with probability

min

(
1,
p(W ∗|Y, ·) f(W )

f(W ∗) p(W |Y, ·)

)
(G.12)

and with the complementary probability I keep the previous draw W .
In the next two paragraphs I omit the subscript t in q to avoid clutter.

The conditional posterior of qn, n = 1, 2, ...N is

p(qn|·) ∝ qvn/2−1
n (q0 + qn)

1/2 exp

(
−1

2

(
1 +

u2n
v0 + vn

)
qn

)
(G.13)

This is a nonstandard density, which resembles the Gamma density except for the presence
of the sum (q0 + qn). Therefore, I draw qn from the proposal Gamma density obtained by
setting q0 to zero and accept the proposal draw with the probability analogous to (G.12).

The conditional posterior of q0 is

p(q0|·) ∝ q
v0/2−1
0

N∏
n=1

(q0 + qn)
1/2 exp

(
−1

2
q0

(
1 +

N∑
n=1

u2n
v0 + vn

))
(G.14)

Again, this density resembles the Gamma density except for the presence of the sum (q0+qn)
and as the proposal I use the Gamma density obtained by setting qn = 0 for all n.

The conditional posterior of v̄: Recall that v1 = ... = vN = v̄. Let αn, βn denote the
parameters of the Gamma prior for v̄, with the kernel v̄αn−1 exp(−v̄/βn).

p(v̄|·) ∝ v̄αn−1 exp(−v̄/βn)Γ(v̄/2)−TN2−TNv̄/2

N∏
n=1

T∏
t=1

q
v̄/2
tn

× (v0 + v̄)−TN/2 exp

(
− 1

2(v0 + v̄)

N∑
n=1

T∑
t=1

u2tn(qt0 + qtn)

)
(G.15)

The conditional posterior of v0: Let α0, β0 denote the parameters of the Gamma prior
for v0, with the kernel v̄α0−1 exp(−v̄/β0).

p(v0|·) ∝ vα0−1
0 exp(−v0/β0)Γ(v0/2)−T2−Tv0/2

T∏
t

q
v0/2
t0

×
N∏
n

(v0 + vn)
−T/2 exp

(
−1

2

N∑
n

(v0 + vn)
−1

T∑
t

u2tn(qt0 + qtn)

)
(G.16)
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The conditional posteriors of v̄ and v0 are again nonstandard densities related to the
Gamma density. To draw from them I follow Jiang and Ding (2016). I first compute the
conditional posterior mode and the curvature at the mode. Then I find the Gamma density
with the same mode and curvature at the mode and I use that Gamma density as the
proposal density.

In an alternative simulation I also use the above approach of matching the mode and the
curvature at the mode to drawing q0, q1, ..., qN . In this case the simulation is substantially
slower and, with a 1 million-long chain all estimation results are very similar. This suggests
that the simple Gamma proposal densities for qn’s are good enough.

The following results are based on a chain of 5,050,000 draws, of which I discard the first
50,000 and keep every 2500th from the rest. I confirm the stationarity of the chain with the
Geweke (1992) diagnostics. While the whole inference with the Independent t model (1) in
the previous section takes seconds (maximum likelihood) or minutes (simulation), generating
one million draws for the PDMT takes about four hours on a standard laptop.

G.3 Results

The PDMT model detects a nontrivial degree of tail dependence. Figure G.1 reports the
posterior distributions of the degree of freedom parameters. The common degrees of freedom
v0 are about 50% larger than the idiosyncratic degrees of freedom v̄ (0.9 vs 0.6).

Figure G.1: PDMT model: the posterior distributions of v0, v̄.
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The uncertainty about C increases in the PDMT model, but only marginally. The first
panel of Figure G.2 reports the 95% posterior bands for C in the PDMT model (lighter
blue), together with the 95% bands and maximum likelihood estimates in the independent
Student-t model (1) for comparison (darker blue). We can see that the uncertainty bands in
the PDMT model are only a little wider than the ones in the independent Student-t model.
The bottom line is that the estimated shocks are the same.

To explore the sensitivity to idiosyncratic degree of freedom v̄ I re-estimate the model
imposing a restriction v̄ = 0.4 and v̄ = 0.2. As shown in panels two and three of Figure G.2,
especially the last restriction widens the uncertainty bands more visibly, but the key features
of the shocks are still distinguishable. Only when I try to push v̄ even lower, the conditional
posterior of W becomes too flat and the algorithm runs into numerical problems. However,
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Figure G.2: PDMT model: responses of the variables to standardized shocks, 95% bands.

v̄ estimated (∼ 0.6) restriction: v̄ = 0.4 restriction: v̄ = 0.2
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Notes: The lighter blue areas show the 95% posterior probability bands in the PDMT model. The
darker blue areas show the 95% bands in the Independent t model. The blue solid lines show the
maximum likelihood estimates in the Independent t model.

the data reject these restrictions. To study this formally, I compute the Bayes factors for
comparing models with different values of v̄ imposed. I use the bridge sampling algorithm
of Meng and Wong (1996) as exposed in Müller and Watson (2020, Algorithm 4). The log
Bayes factor of model v̄ = 0.6 vs v̄ = 0.4 is 3.9, indicating that 0.6 is strongly preferred to
0.4. The log Bayes factor of model v̄ = 0.4 vs v̄ = 0.2 is 26.5, indicating that 0.4 is very
strongly preferred to 0.2.3

3In these model comparisons W is a nuisance parameter that is common to all models and the flat prior
p(W ) does not prevent comparing the models using Bayes factors.
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H Using more information

H.1 Estimation with the principal components of interest rates

Figure H.1: The model with the principal components: responses of the variables to stan-
dardized shocks.

with principal components baseline (for reference)
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Notes: The blue areas show the 95% posterior probability bands and the solid lines with dots
show the maximum likelihood estimates. The results are based on the independent t model. The
bands do not take into account the uncertainty about the principal component estimation.

In this section I reestimate the baseline model replacing the three interest rate surprises
MP1, ONRUN2, ONRUN10 with the first three principal components extracted from a larger
set of interest rate surprises. I take eight variables from the GSS dataset: the first and third
fed funds futures, the second through fourth eurodollar futures, 2-year, 5-year, and 10-year
Treasury yields. In terms of the GSS identifiers, I specify

x = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10). (H.1)

This choice of variables follows Swanson (2021)’s choice of liquid instruments with maturities
that do not overlap. I extract the first three principal components from x and plug them
into the model along with the SP500, i.e. I specify y=(PC1(x), PC2(x), PC3(x), SP500).

I estimate model (1) by maximum likelihood, obtaining four shocks and the matrix C
containing their effects on the three principal components and on SP500. Then I multiply the
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coefficients of the principal components (i.e. the first three columns of C) by their loadings in
the principal components analysis, thus backing out the effects of the shocks on the original
GSS variables. I also repeat this for every draw from the posterior sampler. For simplicity,
I abstract from the estimation uncertainty about principal components and their loadings,
I treat them as known quantities. To present the responses of the variables graphically,
I put the maturity on the x-axis for the yields and I put the expiration on the x-axis for
the futures, so the result is not exactly a yield curve, it is just a diagram representing the
movements of these variables. Figure H.1 reports the results.

We can see four shocks that are very similar as in the baseline case. Table H.2 reports
their rank correlations with the baseline shocks, which range from 0.73 to 0.96. The new
findings are about the intermediate maturities and futures that were missing in the baseline
specification. In particular, we can see that both Odyssean and Delphic forward guidance
have the strongest effects on the fourth eurodollar future, i.e. on expected 3-month LIBOR
approximately one year into the future.

H.2 Models with three shocks

In this section I estimate models with three shocks. First, I drop the SP500 surprise and
limit the analysis to the three principal components of interest rate surprises, y=(PC1(x),
PC2(x), PC3(x)). This information set is the same as in Swanson (2021). It turns out that
in this case I estimate basically the same shocks as Swanson (2021). Table H.1 reports that
the rank correlations between these shocks range from 0.83 to 0.95 and the linear correlations
range from 0.94 to 0.97 (I normalize the lsap shock to be a tightening so for this shock the
sign of the correlation is negative). Figure H.2 shows the effects of the three shocks in the
first column. We can see the intuitive effects of a standard policy shock, a forward guidance
shock and an asset purchase shock. It is remarkable that one can recover Swanson’s shocks
by maximizing the Student-t likelihood only, without imposing his bespoke factor rotations.
This exercise serves as another statistical validation of Swanson’s approach.

Table H.1: Pairwise rank and linear correlations for models with three shocks

Obs. u1 u2 u3

y=(PC1(x), PC2(x), PC3(x))

Swanson (2021) 241 ff:
0.83

(0.97)
fg:

0.95

(0.95)
lsap:

-0.87

(-0.94)

y=(PC1(x′), PC2(x′), PC3(x′))

Baseline 241 u1:
0.70

(0.94)
u2:

0.96

(0.98)
u4:

0.97

(0.99)

Note. Rank (Spearman’s) correlations on top, regular font; linear (Pearson’s) correlations
below, in brackets, italics. ‘ff’, ‘fg’ and ‘lsap’ stand for fed funds, forward guidance and
large scale asset purchase shocks.

In the second experiment, I include the stock price in the vector from which I extract
three principal components. That is, I specify a nine-variable vector x′, consisting of the
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Figure H.2: Models with three shocks: responses of the variables to standardized shocks.
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Notes: The blue areas show the 95% posterior probability bands and the solid lines with dots
show the maximum likelihood estimates. The results are based on the independent t model. The
bands do not take into account the uncertainty about the principal component estimation.

previous eight variables plus SP500,

x′ = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10, SP500). (H.2)

I extract three principal components, specify y=(PC1(x′), PC2(x′), PC3(x′)) and estimate
model (1). This time the three shocks picked up by the maximum likelihood estimation
are essentially the same as the standard policy (u1), Odyssean forward guidance (u2) and
Delphic forward guidance (u4) shocks in the baseline specification. This is clear both from
the impact effects of the shocks, reported in the right panel of Figure H.2 and from the high
positive correlations with baseline u1, u2, u4 reported in Table H.1.

To sum up, a three shock model focused on the interest rates alone recovers the fed funds,
forward guidance and LSAP shocks of Swanson (2021). A three shock model accounting for
the stock prices as well recovers the fed funds, Odyssean forward guidance and Delphic
forward guidance shocks.

H.3 Searching for more shocks

In this section I estimate models with five or more shocks. These exercises yield either
additional Delphic shocks differing by the stock price responsiveness, or a new shock that
mainly affects the exchange rate.

First, I extract five principal components from x′ and specify y=(PC1(x′), PC2(x′),
PC3(x′) PC4(x′), PC5(x′)). See the first panel of Figure H.3. In this case the first three
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Figure H.3: Models with more shocks
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Notes: The blue areas show the 95% posterior probability bands and the solid lines with dots
show the maximum likelihood estimates. The results are based on the independent t model. The
bands do not take into account the uncertainty about the principal component estimation.

shocks remain unchanged, but instead of a single Delphic shock we now have two Delphic
shocks, of which one moves the stock prices more relative to the interest rates, and another
less.

Second, I specify a ten-variable vector x′′, consisting of the previous nine variables plus
the euro-dollar exchange rate,

x′′ = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10, SP500, EURO).
(H.3)

I extract five principal components from x′′ and specify y=(PC1(x′′), PC2(x′′), PC3(x′′)
PC4(x′′), PC5(x′′)). See the second panel of Figure H.3. In this case the first four shocks
are again basically as in the baseline specification. Additionally, we can now observe the
responses of the dollar. The first three shocks, standard policy, Odyssean forward guidance
and LSAP shocks, have a similar effect on the dollar: it strengthens by about 15 basis points
in each case. By contrast, the Delphic shock has an insignificant effect on the dollar. We also
obtain a new, fifth shock which mainly affects the exchange rate, while having very small
effect on the interest rates and stock prices.

In the third exercise I extract six principal components from x′′ and include all of them
in y. See the third panel of Figure H.3. In this case we obtain the shocks familiar from the
previous two exercises: including the two Delphic shocks and the exchange rate shock, in
addition to the standard policy, Odyssean forward guidance and asset purchases.
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Table H.2: Pairwise rank and linear correlations with the baseline model shocks

Obs. u1 u2 u3 u4

Model in Figure H.1

PC1-3(x),SP500 241 u1:
0.87
(0.97)

u2:
0.95
(0.97)

u3:
0.73
(0.88)

u4:
0.96
(0.98)

Models in Figure H.3

PC1-5(x′) 241 u1:
0.89
(0.98)

u2:
0.89
(0.94)

u3:
0.93
(0.98)

u4:
0.77
(0.81)

u5:
-0.04
(-0.24)

u5:
0.18
(0.10)

u5:
-0.16
(-0.22)

u5:
0.48
(0.61)

PC1-5(x′′) 241 u1:
0.88
(0.97)

u2:
0.90
(0.93)

u3:
0.69
(0.88)

u4:
0.97
(0.99)

u5:
-0.07
(-0.07)

u5:
0.17
(0.10)

u5:
-0.21
(-0.10)

u5:
-0.04
(-0.05)

PC1-6(x′′) 241 u1:
0.89
(0.98)

u2:
0.87
(0.93)

u3:
0.91
(0.98)

u4:
0.77
(0.81)

u5:
-0.04
(-0.25)

u5:
0.17
(0.10)

u5:
-0.14
(-0.21)

u5:
0.48
(0.60)

u6:
-0.06
(-0.07)

u6:
0.18
(0.11)

u6:
-0.23
(-0.11)

u6:
-0.05
(-0.06)

Note. Rank (Spearman’s) correlations on top, regular font; linear (Pearson’s) correlations below,
in brackets, italics. The first column identifies the models by the variables included in y.

Table H.2 reports the rank correlations of the shocks obtained in the above exercises
with the baseline shocks. In each case the first four shocks are highly correlated with the
corresponding baseline shocks. The new Delphic shock is mainly correlated with the baseline
Delphic shock (0.48). The new exchange rate shock is weakly negatively correlated with the
LSAP shock (-0.21 to -0.23) and very little with the other shocks.
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I Further details on local projections

This section provides definitions and sources for the daily variables studied in section 6 and
reports the results for additional variables.

I.1 Daily variables: definitions and sources

The full sample is from July 1991 to June 2019. Below, the sample is only provided for the
variables that are not available in the full sample.

• Federal Funds Effective Rate - Source: Fred. https://fred.stlouisfed.org

Identifier: dff, after Board of Governors of the Federal Reserve System, Release H.15
Selected Interest Rates. Units: percent. Transformation: none.

• 2-year Treasury bond yield, 10-year Treasury bond yield - Zero-coupon yield,
Continuously Compounded. Source: https://www.federalreserve.gov/pubs/feds/
2006/200628/200628abs.html Identifiers: SVENY02, SVENY10. Reference: Gürkaynak
et al. (2007) Units : percent. Transformation: none.

• S&P500 - Standard and Poor’s 500 Stock Price Index Source: Haver. Identifier:
SP500@DAILY Units: index. Transformation: 100*log.

• High yield corporate bond OAS (US) - ICE BofA US High Yield Index Option-
Adjusted Spread (OAS). US dollar denominated below investment grade rated corpo-
rate debt publicly issued in the US domestic market. Source: Fred, after ICE Data
Indices, LLC. Identifier: bamlh0a0hym2. Units: percent. Transformation: none.
Sample: from 31 December 1996.

• 5-year Breakeven Inflation - (also 2-year, 10-year, 1-year-4-years-ahead, 5-year-5-
years-ahead Breakeven Inflation reported in the appendix), based on the TIPS yield
curve. Source: https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.
html Identifiers: BKEVEN05 (BKEVEN02,BKEVEN10,BKEVEN1F4,BKEVEN5F05).
Reference: Gürkaynak et al. (2010) Units : percent. Transformation: none.

• EUR per USD - Exchange rate, extended by the BIS back to 1974. Source: BIS.
Bilateral exchange rates, BIS WS XRU, Identifier: D.XM.EUR.A https://data.

bis.org/topics/XRU/BIS,WS_XRU,1.0/D.XM.EUR.A Units: Euros per one US dollar.
Transformation: 100*log.

Variables reported in the Appendix:

• US Short Shadow Rate (Krippner) - References: Krippner (2013, 2015). Down-
loaded from https://www.ljkmfa.com/visitors/. Units: Percent. Transformation:
none. Sample: from 3 January 1995.

• 3-month Treasury yield, gs3mo - Market Yield on U.S. Treasury Securities at 3-
Month Constant Maturity, Quoted on an Investment Basis. Source: Fred. https:
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//fred.stlouisfed.org Identifier: dgs3mo, after Board of Governors of the Federal
Reserve System, Release H.15 Selected Interest Rates. Units: percent. Transforma-
tion: none.

• bofaml-us-aa-yld, bofaml-us-aa-oas, bofaml-us-bbb-yld, bofaml-us-bbb-oas
- ICE BofA AA US Corporate Index Effective Yield, ICE BofA AA US Corporate
Index Option-Adjusted Spread, ICE BofA BBB US Corporate Index Effective Yield,
ICE BofA BBB US Corporate Index Option-Adjusted Spread. Source: Fred, after ICE
Data Indices, LLC. https://fred.stlouisfed.org Identifiers: BAMLC0A2CAAEY,
BAMLC0A2CAA, BAMLC0A4CBBBEY, BAMLC0A4CBBB. Units: percent. Trans-
formation: none. Sample: from 31 December 1996.

• NFCI - Chicago Fed National Financial Conditions Index, weekly (Fridays), Source:
Fred, after Chicago Fed. https://fred.stlouisfed.org Identifier: NFCI. Units:
index. Transformation: linearly interpolated to daily frequency.

• Broad, AFE, EME - Nominal Broad Dollar Index, Nominal Advanced Foreign
Economies Dollar Index Nominal Emerging Market Economies Dollar Index. Trade-
weighted indices provided by the Federal Reserve Board. Source: The data from
2006 onward come from the FRB Release H10, https://www.federalreserve.gov/
datadownload/Build.aspx?rel=H10. The data before 2006 come from von Beschwitz
et al. (2019). Units: Index, per one US dollar. Transformation: 100*log.

I.2 Local projection results for additional variables

Figure I.1 reports the effects of the shocks on alternative measures of short term interest
rates. The first row reports the Fed Funds Effective Rate again, for reference. The second
row reports the US Short Shadow Rate constructed by Krippner (Krippner, 2013, 2015).
Shadow rates are designed to capture the broader monetary policy stance when the rates are
constrained by the effective lower bound. We can see the intuitive result that the response
of the Shadow Rate to contractionary unconventional policy shocks u2 and u3 becomes
positive. However, it is not estimated to be very persistent. The point estimate returns
to zero after about 15 business days and the results beyond the first days are not very
statistically significant. Since the Shadow Rate is available only from 1995, the third row
reports the results for a variable that extends the Shadow Rate using the Fed Funds Effective
rate before 1995. The resulting series is not very homogeneous, as the Fed funds effective
rate is significantly more volatile than the shadow rate. The responses to shocks for this
variable are roughly a mix of the previous two responses. Finally the last row reports the 3-
month treasury yield (gs3mo). The response to u1 is dampened compared with the response
of the fed funds effective rate (impact response of 6 basis points for gs3mo compared with
10 basis points for the fed funds effective rate), while the responses to the remaining shocks
are similar to the fed funds effective rate.

Figure I.2 shows that corporate bond yields and spreads increase after shocks u1, u2, u3.
By contrast, after u4 corporate bond spreads decline and yields do not react significantly.
The first two rows show the results for the AA-rated bonds and subsequent two rows show
the results for the BBB-rated bonds, which are qualitatively similar. After shocks u1, u2, u3
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Figure I.1: The effects of the shocks on daily financial variables, local projection estimates:
short term interest rates
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Note. See notes under Figure 5.

yields increase on impact, but the spreads do not, so the yield increases only reflect the
increases in the reference Treasury yields of the same maturity. The subsequent increase in
the yields is driven largely by the gradual widening of the spreads. After shock u4 yields do
not move significantly and spreads decline.

The last row of Figure I.2 reports the responses of the Chicago Fed’s National Financial
Conditions index (NFCI), which summarizes 105 financial indicators representing money
markets, debt, equity markets and banking system. The story is very similar to that of the
corporate bond spreads: financial conditions tighten after contractionary monetary policy
shocks u1, u2, u3 and ease after the Delphic shock u4. Note that the index is linearly inter-
polated here from weekly to daily frequency, so it is a cruder measure of the effects, but it
is reassuring that it unambiguously confirms the lessons from the corporate bond spreads.

Figure I.3 gives more information about the term structure of breakeven inflation rates.
Assuming that breakeven inflation rates mainly reflect inflation expectations, the figure
suggests that after u1 markets expect a very gradual and persistent disinflation. We can
see that the decline in the 5-year breakeven rate is larger than that in the 2-year breakeven
rate and that the 1-year-4-year forward and even 5-year-5-year forward decline significantly.
By contrast, after u2 and u3 the expected disinflation is more front-loaded, with the 2-year
breakeven rate falling by most and 1-year-4-years forward mostly insignificant (in the long
run markets expect inflation to rebound, as the 5-year-5-year forward increases). After u4
breakeven rates increase significantly at horizons up to 5 years. The above discussion assumes
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Figure I.2: The effects of the shocks on daily financial variables, local projection estimates:
corporate bond yields and spreads, financial conditions index
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Note. See notes under Figure 5. bofaml-us-aa-yld - ICE BofA AA US Corporate Index Effective
Yield; boraml-us-aa-oas - ICE BofA AA US Corporate Index Option-Adjusted Spread; bofaml-us-
bbb-yld - ICE BofA BBB US Corporate Index Effective Yield; bofaml-us-bbb-oas - ICE BofA BBB
US Corporate Index Option-Adjusted Spread

that breakeven rates are driven mainly by inflation expectations, the caveat should be kept
in mind that they could also reflect liquidity and inflation risk premia.

Figure I.4 reports the responses of trade-weighted nominal exchange rate indices: the
broad index, the advanced foreign economies (AFE) subindex and the emerging market
economies (EME) subindex. The responses to u2 are the strongest and most persistent
across all indices. The positive response of the broad index to u1 is driven by advanced
economy currencies and it is insignificant with the EME. The responses of the indexes to u3
and u4 are mostly insignificant. In the long run u4 might even weaken the dollar against the
EME currencies, consistently with the positive Delphic shock triggering an increase in the
risk appetite and a capital flight away from safety.
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Figure I.3: The effects of the shocks on daily financial variables, local projection estimates:
breakeven inflation rates from TIPS
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Figure I.4: The effects of the shocks on daily financial variables, local projection estimates:
exchange rates
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Note. See notes under Figure 5. AFE - Advanced Foreign Economies index. EME - Emerging Market
Economies index.
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J Additional figures

Figure J.1: The effects of selected FOMC announcements before 2008
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Note. The horizontal line in the right subplots represents the change of the S&P500 stock index.

IM stands for an “inter-meeting” announcement.

33



Figure J.2: The effects of selected FOMC announcements since 2008
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Note. The horizontal line in the right subplots represents the change of the S&P500 stock index.
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